skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chang, Ming-Ching"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Image manipulation localization (IML) is a critical technique in media forensics, focusing on identifying tampered regions within manipulated images. Most existing IML methods require extensive training on labeled datasets with both image-level and pixel-level annotations. These methods often struggle with new manipulation types and exhibit low generalizability. In this work, we propose a training-free IML approach using diffusion models. Our method adaptively selects an appropriate number of diffusion timesteps for each input image in the forward process and performs both conditional and unconditional reconstructions in the backward process without relying on external conditions. By comparing these reconstructions, we generate a localization map highlighting regions of manipulation based on inconsistencies. Extensive experiments were conducted using sixteen state-of-the-art (SoTA) methods across six IML datasets. The results demonstrate that our training-free method outperforms SoTA unsupervised and weakly-supervised techniques. Furthermore, our method competes effectively against fully-supervised methods on novel (unseen) manipulation types. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Free, publicly-accessible full text available February 26, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Free, publicly-accessible full text available November 8, 2025
  5. Despite recent progress in Multiple Object Tracking (MOT), several obstacles such as occlusions, similar objects, and complex scenes remain an open challenge. Meanwhile, a systematic study of the cost-performance tradeoff for the popular tracking-by-detection paradigm is still lacking. This paper introduces SMILEtrack, an innovative object tracker that effectively addresses these challenges by integrating an efficient object detector with a Siamese network-based Similarity Learning Module (SLM). The technical contributions of SMILETrack are twofold. First, we propose an SLM that calculates the appearance similarity between two objects, overcoming the limitations of feature descriptors in Separate Detection and Embedding (SDE) models. The SLM incorporates a Patch Self-Attention (PSA) block inspired by the vision Transformer, which generates reliable features for accurate similarity matching. Second, we develop a Similarity Matching Cascade (SMC) module with a novel GATE function for robust object matching across consecutive video frames, further enhancing MOT performance. Together, these innovations help SMILETrack achieve an improved trade-off between the cost (e.g., running speed) and performance (e.g., tracking accuracy) over several existing state-of-the-art benchmarks, including the popular BYTETrack method. SMILETrack outperforms BYTETrack by 0.4-0.8 MOTA and 2.1-2.2 HOTA points on MOT17 and MOT20 datasets. Code is available at http://github.com/pingyang1117/SMILEtrack_official. 
    more » « less